
Concrete WaterProofing Admixture

CWPA 800 has been specifically formulated for use in normal and structural lightweight concrete mixes to produce low permeability concrete across a wide spectrum of mix designs.

ISE Logik is the thought leader in proactively addressing concrete moisture vapor emissions that negatively impact flooring, roofing, and coatings by sharing knowledge and expertise on concrete vapor transmission and the most effective and sustainable way to stop it through several highly regarded AIA accredited CEU courses. The company is an advocate of environmentally safe and effective proactive solutions that ultimately save the design/build industry valuable time and money. Its admixture for new slab construction is 100% RH warranted and eliminates the need for moisture testing while protecting flooring or roofing systems. Actively participating across several ASTM committees, directly instrumental in authoring two new ASTM standards focused on improving flooring installations, recognized and respected across various flooring and roofing trade associations, no one knows more nor does more to proactively address the concrete moisture vapor emissions that negatively impact concrete slab final finish applications and construction schedules than ISE Logik.

CWPA 800 Concrete WaterProofing Admixture

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025, ISO 14040, and EN 15804+A2. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

EPD PROGRAM AND PROGRAM OPERATOR	UL ENVIRONMENT	www.ul.com
NAME, ADDRESS, LOGO, AND WEBSITE	333 PFINGSTEN RD, NORTHBROOK, IL	60062 www.spot.ul.com
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	Program Operator Rules v 2.7 2022	
MANUFACTURER NAME AND ADDRESS	ISE Logik Industries, Inc. 5635 Iron Works Road Theodore	, AL 36581
DECLARATION NUMBER	4790599802.101.1	
DECLARED PRODUCT & DECLARED UNIT	CWPA 800 Declared Unit = 1 kg	
REFERENCE PCR AND VERSION NUMBER	Environmental Product Declaratic (IBU), Part B: Requirements on th	ons of Institute Construction and Environment e.V. ne EPD for Concrete admixtures
DESCRIPTION OF PRODUCT APPLICATION/USE	used in commercial settings.	
PRODUCT RSL DESCRIPTION	N/A	
MARKETS OF APPLICABILITY	Global	
DATE OF ISSUE	November 1, 2022	
PERIOD OF VALIDITY	5 Years	
EPD TYPE	Product Specific	
RANGE OF DATASET VARIABILITY	N/A	
EPD SCOPE	Cradle-to-Gate, with Options	
YEAR(S) OF REPORTED PRIMARY DATA	February 2022 - May 2022	
LCA SOFTWARE & VERSION NUMBER	SimaPro 9.2.0.2	
LCI DATABASE(S) & VERSION NUMBER	Ecoinvent v3.5 & USLCI v2.0	
LCIA METHODOLOGY & VERSION NUMBER	TRACI, CML 4.1, and methods as	s specified by EN15804+A2+AC2021
The sub-category PCR review was conducted by:	•	Institut Bauen und Umwelt (IBU) - PCR Review Panel
This declaration was independently verified in accord Institut Bauen und Umwelt e.V. (IBU) "Part A: Calcul sessment and Requirements on the Project", based PCR, with additional considerations from CEN Norm	Cooper McC	
	Cooper McCollum, UL Environment	
This life cycle assessment was conducted in accord reference PCR by:	Sustainable Solutions Corporation	
This life cycle assessment was independently verifie and the reference PCR by: 1 Exclusions: EPDs do not indicate that any environmental or social perform.		James Mellentine, Thrive ESG

1 Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds, e.g., Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

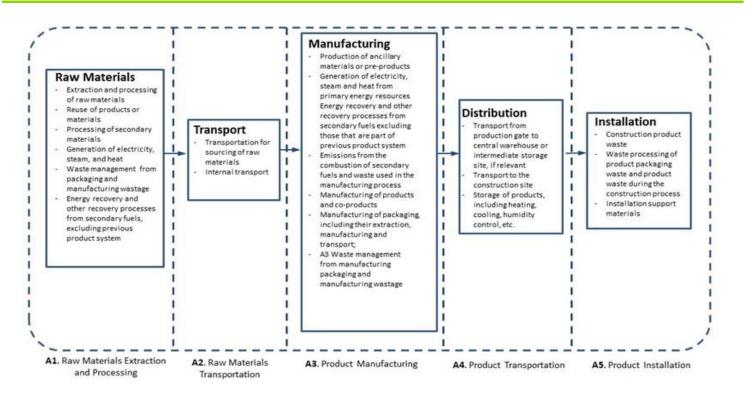
CWPA 800 Concrete WaterProofing Admixture

General Information

Description of Company/Organization

ISE stands for "Interiors, Surfaces and Environment" and since 2014 has been dedicated to Lean Construction practices and the freedom from costly dependence on concrete moisture testing and subsequent topically applied moisture mitigation systems as a standard building protocol. The design-build industry relies on ISE Logik admixtures to save time and money in unnecessary testing, project delays, and cost overruns.

Production Description


CWPA 800 is a non-toxic, VOC free, liquid admixture formulated to react with the hydroxide ions produced by the cement hydration process. CPWA 800 creates additional hydration within the capillary pores and blocks them, effectively shutting down moisture movement through the concrete. CWPA 800 will not promote nor contribute to corrosion of embedded or reinforcing steel. Perfectly suited for:

- Elevator pits and retaining walls
- Water retaining structures such as pools and cisterns

SE LOGIK

- Foundations
- Walls
- Footings
- Civil engineering projects of any magnitude

Flow Diagram

Environment

According to ISO 14025, ISO 14044, and EN 15804+A2

CWPA 800 Concrete WaterProofing Admixture

Manufacturer Specific EPD

This product-specific EPD was developed based on the cradle-to-gate, with options (modules A1-A5) Life Cycle Assessment. This includes raw material extraction and processing, raw material transport, product manufacturing, product transport, and installation. Manufacturing data were gathered directly from company personnel.

Application

CWPA 800 is designed to reduce concrete's permeability and increase its resistance to water penetration under hydrostatic conditions.

Material Composition

The composition of the CWPA 800 is as follows (mass %):

Component	CWPA 800
Water	44.0%
Sodium Silicate Liquid	56.0%
Additive	0.0001%
Total	100.0%

ISELOGIK

CERTIFIED

Techincal Data

Concrete WaterProofing Admixture

For the declared product, the following technical data in the delivery status must be provided with reference to the test standard:

Category	Value	Unit
Density (ISO 758)	1.20 - 1.25	Specific Gravity
Solids content (EN 480-8)	N/A	(M%)
pH value (ISO 4316)	11.2	(log ₁₀ (aH+))
Chloride content (EN 480-10)	<0.1	(M%)
Alkali content (EN 480-12)	N/A	(M%)
Corrosion behavior (EN 934-1 / EN 480-14)	N/A	(µA/cm ²)
SiO ₂ content (EN 192-2)	N/A	(M%)
Air content of fresh concrete (EN 12350-7)	N/A	(Vol%)
Compressive strength (EN 12390-3)	N/A	(N/mm ²)
Water reduction (EN 12350-2 / EN 12350-5) Plasticizer	N/A	(mm)
Increasing / maintaining of consistence (EN 12350- 2 / EN 12350-5) Superplasticizer	N/A	(mm)
Setting time (EN 480-2) Accelerator/Retarder	N/A	(min)
Air void Characteristics in hardened concrete (EN 480-11) Air entrainer	N/A	(mm)
Capillary water absorption (EN 480-5)	N/A	(g/mm ²)
Formulated to Reduce Penetration of Liquids	Yes	-
Zero Volume of Water Passed Through Per US Army Corps CRD 48	Yes	-
Decreased Coefficient of Permeability Over Control	> 1000%	-
PRAH per ACI 212.3R	Yes	-
Autogenous Crack Healing	Yes	-
Minimal or No Effect On Setting Time (ASTM C403)	Yes	-
Reduces Drying Shrinkage by Day 28 (ASTM C157)	Yes	-
Minimal or No Effect On Slump (ASTM C143)	Yes	-
Increase in 28-day Compressive Strength (ASTM C39)	Yes	-
Volatile Organic Compounds (VOCs)	N/A	g/l
Hazardous Vapors	N/A	-

CWPA 800

Concrete WaterProofing Admixture

Market Placement / Application Rules

CWPA 800 concrete waterproofing admixture is produced in accordance with ASTM C494, NSF 61, and NSF 372. Per LEED® CWPA 800 is an inherently non-emitting source of VOCs, and is tested using EPA Method 24, ACoE CRD-C 48-92, and DIN 1048.5. CWPA 800 is also HPD certified using HPD v2.2.

Properties of Declared Product as Delivered

	Characteristics						
Product	CWPA 800	-					
Thickness	N/A	cm					
Density	1.20 - 1.25	(g/ml)					

U

CERTIFIED

SE LOGIK

Concrete WaterProofing Admixture

Methodological Framework

Declared Unit

CWPA 800

The declaration refers to the functional unit of 1 kg of CWPA 800.

Name	Value	Unit
Declared Unit	1.0	kg
Gross Density	1200 - 1250	kg/m ³
Conversion Factor	1.0	-

System Boundary

This is a cradle-to-gate with options Environmental Product Declaration. The following life cycle phases were considered:

Pro	Product Stage		Construction Process Stage			Use Stage			E	nd of Lif	e Stage	6*	Benefits and Loads Beyond the System Boundaries			
Raw material supply	Transport	Manufacturing	Transport from gate to the site	Construction/ installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction /demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Description of the System Boundary Stages Corresponding to the PCR

(X = Included; MND = Module Not Declared)

*This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

Reference Service Life and Building Estimated Service Life

The Reference Service Life is determined by the guidance from the Product Category Rules and varies by product type and use phase scenario. Since the use phase is not included in this study, no Reference Service Life is declared.

Allocation

The LCI data was collected from the Theodore, AL manufacturing facility. This data was collected from February 2022 to May 2022. The Theodore, AL plant is a satellite facility that was established for ISE Logik production in late 2021. Satellite facilities allow ISE Logik to produce their product more efficiently since the production occurs in batch processing; thus, requiring less product line switches. Three months of data were determined to be sufficient because the line that the products are produced on is individually metered allowing the facility to collect primary data specific to each batch process, excluding data relevant to other products and removing the necessity for allocation between different product types. Allocation was done on a mass basis.

Cut-off Criteria

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass of the considered impact categories. For that a documented assumption is admissable.

For Hazardous Substances - as defined by the U.S. Occupational Health and Safety Act the following requirements apply:

- The Life Cycle Inventory (LCI) of hazardous substances will be included, if the inventory is available.
- If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product, if its mass represents more than 0.1% of the product composition.
- If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided.

This EPD is in compliance with the cut-off criteria. No processes were neglected or excluded. Capital items for the production processes (machine, buildings, etc.) were not taken into consideration.

Data Sources/Background Data

For life cycle modeling, the SimaPro v9.2.0.2 Software, a recognized LCA modeling software program, was used. All background data sets relevant for production and disposal were taken from this software. Datasets include those from Ecoinvent v3.5 and the US LCI database.

Data Quality

For the data used in this LCA, the data quality is considered to be good to high quality. The data and data sets cover all relevant process steps and technologies over the supply chain of the represented products. The majority of secondary data sets are from the Ecoinvent v3.5 database and the US LCI database, the study adopts critically reviewed data wherever possible for consistency, precision, and reducibility to limit uncertainty. The data used are complete and representative of North America in terms of the geographic and technological coverage and is of a recent vintage, i.e., less than ten years old.

Period Under Review

The data used for the Life Cycle Assement refer to the production processes from February 2022 to May 2022. The quantities of raw materials, energies, auxilary materials, and supplies used have been ascertained as average monthly values.

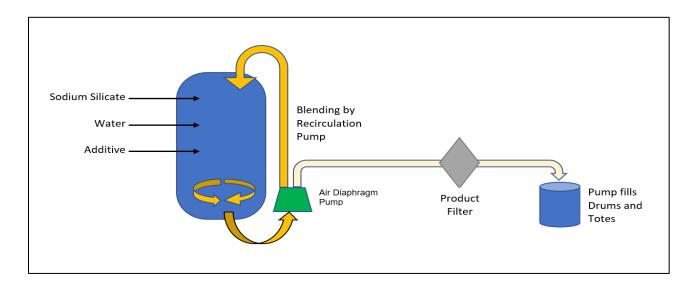
Comparability

A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to EN 15804+A2 and the building context, respectively the product-specific characteristics of performance, are taken into account. Environmental product delarations from different programs may not be comparable. Full conformance with the PCR for concrete admixture products allows EPD comparability only when all stages of a product's life cycle have been considered. However, variations and deviations are possible.

Estimates and Assumptions

A significant majority of sales of the products in this LCA occur within North America, specifically within the continental USA.

Raw material transport from supplier to manufacturer:	Mode: Diesel-powered truck/trailer Distance: 175 miles
Manufacturing waste and product disposal transportation:	Mode: Diesel-powered truck/trailer Distance: 50 miles


CWPA 800 Concrete WaterProofing Admixture

Technical Information and Scenarios

Manufacturing

The ISE Logik product is manufactured in Theodore, AL. The three primary ingredients, water, sodium silicate, and an additive are added to a mixing tank with a recirculation pump. The water is piped in from the municipal tap, sodium silicate is tankered into a storage tank, and an additive comes in a packaging bag (which is the only waste stream of the manufacturing facility). After proper mixing, the product is pumped out of the tank by an air diaphragm pump and passes through a filter before it is packaged in drums and totes for shipping. There is no scrap generated during manufacturing. Residue from the filter is added to the next batch process to be worked into the next product, eliminating any waste product from process.

Packaging

These products are packaged with plastic in the following forms:

Component	Percentage in Mass (%)
Shrink wrap	7.22%
Plastic strapping	5.41%
55-gal Poly Drum	77.73%
15-gal Poly Drum	9.64%
Total	100.00%

Biogenic Carbon Content

Name	Value	Unit per declared unit	
Biogenic Carbon Content in product	0.00	kg C	
Biogenic Carbon Content in accompanying packaging	0.00	kg C	

CWPA 800

Concrete WaterProofing Admixture

Transportation

Transport to Construction Site (A4)					
Name	CWPA 800	Unit			
Fuel Type	Diesel	-			
Liters of fuel	38	l/100km			
Vehicle Type	0.05% by ship 99.95% by truck	-			
Transport Distance	2819	km			
Capacity Utilization (including empty runs, volume based)	90	%			
Gross Density of Products Transported	1200 - 1250	kg/m ³			
Capacity Utilization Volume Factor	1	-			

Product Installation

Installation is accomplished by dosing the liquid admixture directly into the concrete at the time of batching. There are no apparent risks involved with the installation of the admixture. The installer should wear appropriate PPE while dosing the product and while installing the concrete.

Installation into the Road (A5)					
Name	CWPA 800	Unit			
Auxiliary materials	-	kg			
Water consumption	-	m ³			
Other resources	-	kg			
Electricity consumption	-	kWh			
Other energy carriers	-	MJ			
Product loss per functional unit	0.00E+00	kg			
Waste materials at construction site	6.31E-03	kg			
Packaging substance (landfill)	6.31E-03	kg			
Packaging substance (incineration)	0.00E+00	kg			
Packaging substance (recycling)	0.00E+00	kg			
Biogenic carbon contained in packaging	0.00E+00	kg CO ₂			
Direct emissions to ambient air*, soil, and water	0.00E+00	kg CO ₂			
VOC emissions	-	μg/m ³			

* CO₂ emissions to air from disposal of packaging

CWPA 800

Concrete WaterProofing Admixture

LCA Results

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Impact Assessment									
Parameter	Parameter	Unit	A1-A3	A4	A5				
GWP	Global warming potential	kg CO ₂ -Eq.	2.99E-01	2.61E-01	4.73E-03				
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.38E-08	9.97E-12	9.16E-12				
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	1.69E-03	1.56E-03	2.23E-06				
EP	Eutrophication potential	kg N-Eq.	6.45E-04	8.70E-05	2.58E-04				
SP	Smog formation potential	kg O ₃ -Eq.	2.02E-02	4.28E-02	5.80E-05				
FFD	Fossil fuel depletion	MJ-surplus	3.37E-01	4.71E-01	8.63E-05				

Results shown below were calculated using methodologies prescribed in EN 15804+A2.

EN 15804+A2 Impact Categories					
Parameter	Parameter	Unit	A1-A3	A4	A5
GWP	Climate Change - total	kg CO ₂ -Eq.	3.17E-01	2.68E-01	5.12E-03
ODP	Ozone depletion	kg CFC-11 eq.	1.29E-08	6.81E-12	8.68E-12
IRP	Ionising radiation, human health	kBq U-235 eq.	8.83E-03	0.00E+00	2.66E-06
POCP	Photochemical ozone formation, human health	kg NMVOC eq.	1.10E-03	1.95E-03	4.84E-06
PM	Particulate matter	Disease incidences	2.19E-08	3.72E-09	1.92E-09
HTP-nc	Human toxicity, non-cancer	CTU _h	4.21E-09	4.53E-09	4.75E-11
HTP-c	Human toxicity, cancer	CTU _h	2.13E-10	3.57E-11	8.73E-12
AP	Acidification	Mole of H^+ eq.	2.02E-03	1.43E-03	1.77E-06
EP-freshwater	Eutrophication, freshwater	kg P eq.	7.28E-05	0.00E+00	4.97E-09
EP-marine	Eutrophication, marine	kg N eq.	3.28E-04	6.70E-04	2.82E-06
EP-terrestrial	Eutrophication, terrestrial	Mole of N eq.	4.32E-03	7.31E-03	9.49E-06
ETP-fw	Ecotoxicity, freshwater	CTU _e	1.12E+01	7.03E+00	6.77E-02
LU	Land Use	Pt	1.89E+00	0.00E+00	1.81E-03
WDP	Water use	m ³ world equiv.	1.06E-01	0.00E+00	5.13E-06
ADPF	Resource use, fossils	MJ	3.44E+00	3.36E+00	6.68E-04
ADPE	Resource use, mineral and metals	kg Sb eq.	7.37E-06	0.00E+00	1.29E-10
GWP- Fossil	Climate Change, fossil	kg CO ₂ -Eq.	3.07E-01	2.68E-01	5.12E-03
GWP- Biogenic	Climate Change, biogenic	kg CO₂-Eq.	9.06E-03	0.00E+00	1.34E-07
GWP-luluc	Climate Change, land use and land use change	kg CO ₂ -Eq.	9.75E-05	0.00E+00	1.35E-08

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP =Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for nonfossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Concrete WaterProofing Admixture

CWPA 800

Results below contain the resource use throughout the life cycle of the product.

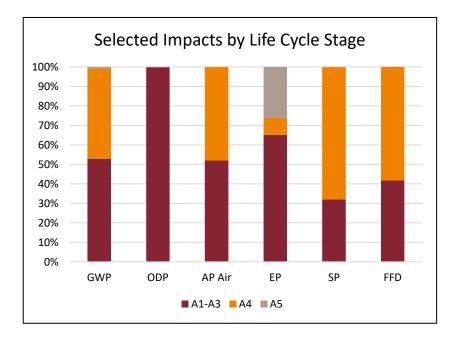
Resource Use					
Parameter	Parameter	Unit	A1-A3	A4	A5
PERE	Renewable primary energy as energy carrier	MJ, lower calorific value	7.45E-02	0.00E+00	6.93E-06
PERM	Renewable primary energy resources as material utilization	MJ, lower calorific value	1.63E-01	0.00E+00	3.17E-06
PERT	Total renewable primary energy use	MJ, lower calorific value	2.37E-01	0.00E+00	1.01E-05
PENRE	Nonrenewable primary energy as energy carrier	MJ, lower calorific value	3.68E+00	3.57E+00	7.14E-04
PENRM	Nonrenewable primary energy as material utilization	MJ, lower calorific value	2.84E-01	0.00E+00	0.00E+00
PENRT	Total non-renewable primary energy use	MJ, lower calorific value	3.97E+00	3.57E+00	7.14E-04
SM	Use of secondary material	MJ, lower calorific value	0.00E+00	0.00E+00	0.00E+00
RSF	Use of renewable secondary fuels	MJ, lower calorific value	0.00E+00	0.00E+00	0.00E+00
NRSF	Use of nonrenewable secondary fuels	MJ, lower calorific value	0.00E+00	0.00E+00	0.00E+00
FW	Use of net fresh water	m ³	8.03E-04	0.00E+00	8.25E-08

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources; SM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows and Waste Categories					
Parameter	Parameter	Unit	A1-A3	A4	A5
HWD	Hazardous waste disposed	kg	3.46E-06	0.00E+00	3.29E-09
NHWD	Non-hazardous waste disposed	kg	4.46E-02	0.00E+00	5.04E-05
RWD	Radioactive waste disposal	kg	5.23E-06	0.00E+00	3.48E-09
CRU	Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00
MR	Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00
MER	Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00
EEE	Exported energy, electrical	MJ	0.00E+00	0.00E+00	0.00E+00
EET	Exported energy, thermal	MJ	0.00E+00	0.00E+00	0.00E+00

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy



CWPA 800

Concrete WaterProofing Admixture

Interpretation

The raw material life cycle stage (A1) is the key driver of environmental impact categories. This is due to the production and processing of sodium silicate used in the product. A close second driver is the distribution transportation life cycle stage (A4) which drives two impact categories, fossil fuel depletion and smog formation, specifically from the emissions of diesel and gas usage and long transportation distances.

According to

ISO 14025, ISO 14044,

and EN 15804+A2

UL

0

CERTIFIED

SE LOGIK

CWPA 800

Concrete WaterProofing Admixture

EN 15804 Disclaimers on Select Impact Categories

ILCD classification	Indicator	Disclaimer	
	Global warming potential (GWP)	None	
ILCD Type 1	Depletion potential of the stratospheric ozone layer (ODP)	None	
	Potential incidence of disease due to PM emissions (PM)	None	
	Acidification potential, Accumulated Exceedance (AP)	None	
	Eutrophication potential, Fraction of nutrients reaching freshwater end compartment (EP-freshwater)	None	
ILCD Type 2	Eutrophication potential, Fraction of nutrients reaching marine end compartment (EP-marine)	None	
	Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	None	
	Formation potential of tropospheric ozone (POCP)	None	
	Potential Human exposure efficiency relative to U235 (IRP)	1	
	Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)	2	
	Abiotic depletion potential for fossil resources (ADP-fossil)	2	
ILCD Type 3	Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	2	
ibeb Type o	Potential Comparative Toxic Unit for ecosystems (ETP-fw)	2	
	Potential Comparative Toxic Unit for humans (HTP-c)	2	
	Potential Comparative Toxic Unit for humans (HTP-nc)	2	
	Potential Soil quality index (SQP)	2	
Disclaimer 1 – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.			
Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.			

CERTIFIED

ISE LOGIK

CWPA 800

Concrete WaterProofing Admixture

Additional Environmental Information

Environment and Health During Manufacturing

ISE Logik products are produced under the most exacting chemical manufacturing processes available with a focus on responsible raw material sourcing and manufacturing to promote the health of our planet. Our state-of- the-art chemical manufacturing facility blends specialty chemical admixtures for cementitious products. Each batch is pre-tested for performance and is HPD and NSF certified. (See CWPA 800 Safety Data Sheet ISE-201506B for complete details.)

Environmental and Health During Installation

ISE Logik MVRA 800 Admixture is dosed directly into the concrete at the time of batching, and pro-actively addresses the concrete moisture issue. It chemically reacts within the concrete matrix during the hydration process to stop moisture vapor emmisions from harming flooring or roofing systems. This product does not contain any components that have regulatory occupational exposure limits (OEL's) established and is not reactive under normal temperatures and pressures. (See CWPA 800 Safety Data Sheet ISE-201506B for complete details.)

Extraordinary Effects

Fire

Avoid inhalation of material or combustion by-products. Stay up wind and keep out of low areas. Liquid material is an aqueous solution and non-flammable.

Water None

Mechanical Destruction None

Delayed Emissions

Global warming potential is calculated using the IPCC fifth assessment report (IPCC 2013) and CML 4.1 impact assessment methodologies. Delayed emissions are not considered.

Environmental Activities and Certifications

ISE Logik is fully committed to providing product transparency and low-VOC, sustainable, and innovative products for moisture control in concrete. Our CWPA 800 admixture has complete ingredient transparency and greener product design, meeting the standard of the Health Product Declaration Collaborative for detailed product content information. It is listed on mindful MATERIALS to provide sustainability information to architects, designers and engineers. CWPA 800 also received the NSF International seal certifying it is lead-free and safe to use as a drinking water system component.

Further Information

ISE Logik Industries, Inc. https://iselogik.com/ 5635 Iron Works Road Theodore, AL 36581

CWPA 800 Concrete WaterProofing Admixture

References

PCR Part A	Product Category Rules for Building-Related Products and Services, Institut Bauen und Umwelt e.V. (IBU), Part A: Calculation Rules for the Life Cycle As-sessment and Requirements on the Project Re- port
PCR Part B	Environmental Product Declarations of Institute Construction and Environment e.V. (IBU), Part B: Requirements on the EPD for Concrete admixtures
• ISO 14025	ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.
• ISO 14040	ISO 14044 Amd 1:2017/amd 2:2020 Environmental management — Life cycle assessment — Requirements and guidelines
• ISO 14044	ISO 14044:2006-10, Environmental management — Life cycle assessment — Requirements and guidelines.
EN 15804	EN 15804+A2:2019: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product.
TRACI 2.1	US EPA, Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI).
CML 2001	Center of Environmental Science of Leiden University impact categories and characterisation methods for impact assessment (CML).
 Life Cycle Assessment 	ISE Logik Industries Inc. Life Cycle Assessment, Sustainable Solutions Corporation, November 2022.
• IBU 2016	Institut Bauen und Umwelt e.V.: General Programme, Instructions for the Preparation of EPDs at the Institut Bauen und Umwelt e.V. Version 1., Berlin: Institut Bauen und Umwelt e.V., 2016. www.ibu-epd.com
• SimaPro 9.2.0.2	SimaPro Analyst, 9.2.0.2 Multi User, Compyright PRE Consultants 2016

CWPA 800 Concrete WaterProofing Admixture

Contact Information

According to ISO 14025, ISO 14044, and EN 15804+A2

Study Commissioner

Please contact ISE Logik at 877-549-5159 or email us at SustainabilityAnswers@ISElogik.com.

LCA Practitioner

Sustainable Solutions Corporation 155 Railroad Plaza, Suite 203 Royersford, PA 19468 USA (+1) 610 569-1047 info@sustainablesolutionscorporation.com www.sustainablesolutionscorporation.com